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Abstract

We introduce a game called the Dating Problem in which a male has to
make decisions about proposing, rejecting, or re-dating a potential female
mate under imperfect knowledge of her quality. This problem is similar to
a variety of problems that arise when estimates must be used to decide the
eligibility of a candidate for a position. We are interested in the relationship
between the quality of the woman eventually proposed to and the asymptotic
expected number of dates required to ensure a fixed quality Q. We show
that every strategy must take Ω( 1

1−Q) dates in expectation, and we propose
a strategy that achieves O( 1

1−Q log 1
1−Q) dates in expectation for a given

quality.

Introduction

In the Dating Problem, a man goes on a potentially infinite series of
dates. Each woman has a quality qi that lies uniformly distributed in the
interval R[0, 1]. Initially, the man only knows that the woman’s quality lies
between 0 and 1. At the end of every date, however, the man discovers more
information about the quality of each woman. In particular, with each date
the man receives another interval of size 1, the start of which is uniformly
distributed between qi−1 and qi where her true quality must also lie. Upon
receiving this information, the man must decide whether to propose to the
woman (and end the game), reject the woman (whereupon he will start
dating a never before seen woman), or ask the woman out on another date.
By using all the information he has about the current woman, the man can
deduce a shrinking interval within which this woman’s true quality must lie
(the intersection of all the known intervals for this woman), and thus obtain
a better idea of the woman’s true quality. The man’s goal, of course, is
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to minimize the number of dates it takes to ensure that he proposes to a
woman whose quality is at least some given Q.

Strategy

A näıve strategy is to date each woman as many times as required to be
certain that her true quality does or does not lie above the given quality Q.
If the man ever sees an interval that proves the woman’s true quality lies
below Q, then he should reject, and if he ever sees an interval that proves
the woman’s true quality lies above Q he should propose. He should re-date
otherwise. Although in practice, this strategy may terminate in a reasonable
amount of time, the analysis will show that this strategy requires an infinite
number of dates in expectation. In practice this strategy does take far longer
than the following strategy.

We propose a strategy where for some threshold Q′ > Q (to be optimized
later) the man dates a woman until he either knows her true quality is less
than Q′ (in which case he rejects her) or he discovers that her true quality
lies above Q (in which case he proposes). If neither of these conditions hold,
the man chooses to date the same woman again. Although this strategy
has the potential to reject qualified women, it discovers unqualified women
using fewer dates than the näıve strategy requires.

Analysis

Under this strategy, for every new woman one of three events must occur.
If the woman’s quality lies in the range R[Q′, 1] the strategy will have the
man eventually propose. If the woman’s quality qi lies in the range R[Q,Q′)
the strategy may have the man eventually propose, or may have the man
eventually reject. And if the woman’s quality lies in the range R[0, Q) the
man will reject eventually. The following table represents these three events:

e1: Q′ ≤ qi e2: Q ≤ qi < Q′ e3: qi < Q

Pr[e] 1−Q′ Q′ −Q Q

Pr[propose this date | e] qi −Q qi −Q 0
Pr[reject this date | e] 0 Q′ − qi Q′ − qi

From this table, we can calculate the expected number of dates our
strategy will take given the fixed quality. In particular, if X is a random
variable representing the number of dates spent by the strategy, then we can
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express the expectation as follows:

E[X] = (1−Q′)E[T1]+(Q′−Q)(E[
qi −Q

Q′ −Q
T2]+E[

Q′ − qi

Q′ −Q
T3]+E[

Q′ − qi

Q′ −Q
]E[X])+Q(E[T4]+E[X])

where T1 is the random variable representing the number of dates it takes
to decide qi ≥ Q given that qi ≥ Q′, T2 is the random variable representing
the number of dates it takes to decide qi ≥ Q given that Q ≤ qi < Q′ and
the man eventually proposes, T3 is the random variable representing the
number of dates it takes to decide qi < Q′ given that Q ≤ qi < Q′ and
the man eventually rejects, and T4 is the random variable representing the
number of dates it takes to decide qi < Q′ given that qi < Q.

In particular:
T1 = 1

qi−Q , T2 = 1
qi−Q , T3 = 1

Q′−qi
, T4 = 1

Q′−qi
. Thus, the expectations

needed to calculate E[X] are:

E[T1] =
1

1−Q′

∫ 1

Q′

1
qi −Q

dqi =
1

1−Q′ ln(
1−Q

Q′ −Q
)

E[
qi −Q

Q′ −Q
T2] =

1
Q′ −Q

∫ Q′

Q

1
Q′ −Q

dqi =
1

Q′ −Q

E[
Q′ − qi

Q′ −Q
T3] =

1
Q′ −Q

∫ Q′

Q

1
Q′ −Q

dqi =
1

Q′ −Q

E[
Q′ − qi

Q′ −Q
] =

1
Q′ −Q

∫ Q′

Q

Q− qi

Q′ −Q
dqi =

1
2

E[T4] =
1
Q

∫ Q

0

1
Q′ − qi

dqi =
1
Q

ln (
Q′

Q′ −Q
)

Putting everything together, we find:

E[X] = ln(
1−Q

Q′ −Q
) + (1 + 1 +

1
2
(Q′ −Q)E[X]) + ln(

Q′

Q′ −Q
) + QE[X]

Solving for E[X]:

E[X] =
ln( 1−Q

Q′−Q) + 2 + ln( Q′

Q′−Q)

1− Q′+Q
2

We now have an expression involving only constants and the variable
Q′ which we are trying to optimize. Note that this equation explains why
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the näıve strategy discussed earlier requires an infinite number of dates in
expectation. In particular,

lim
Q′→Q

E[X] =
limQ′→Q(ln( 1−Q

Q′−Q) + 2 + ln( Q′

Q′−Q))

1−Q
= ∞

Returning to our expression for E[X], we can take the derivative dE[X]
dQ′ and

arrive at the following expression:

(1−Q− Q′−Q
2 )( −Q′−Q

Q′(Q′−Q)) + 1
2(ln( (1−Q)Q′

(Q′−Q)2
) + 2)

(1−Q− Q′−Q
2 )2

Unfortunately, the roots of this expression cannot be found analytically.
However, using Newton’s method, we have arrived at the following table:

Q Q′

0.2 0.703401
0.4 0.789132
0.6 0.853577
0.7 0.8837
0.8 0.9154

0.85 0.9328

Q Q′

0.9 0.9518
0.925 0.9622
0.95 0.9733

0.975 0.9856
0.985 0.9910
0.995 0.996755

The expected number of women the man sees under our strategy can be
calculated as follows:

E[W ] = Pr[man rejects woman i]E[W ] + 1

E[W ] = (
1

Q′ −Q

∫ Q′

Q
(Q′ − qi) dqi + Q)E[W ] + 1 = (

Q′ −Q

2
+ Q)E[W ] + 1

E[W ] =
2

2−Q−Q′

Also, because the derivative is close to 0 for values near the optimal, Q′

can be approximated without too much loss with the following expression:
Q+1

2 . Notice that if we use this value for Q′ for the expected number of
women our strategy requires 4

3
1

1−Q women in expectation.
Lemma: Every strategy requires Ω( 1

1−Q) women.
Proof: The probability of a given woman having quality less than Q

is Q. Thus, we have the following recursive equation:

E[W ] = QE[W ] + 1 =⇒ E[W ] =
1

1−Q
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Because it takes this many women in expectation before any woman of the
desired quality comes up, it must be the case that every strategy requires
Ω( 1

1−Q) women in expectation.

We therefore see that our strategy is within a constant factor of the
optimal number of women seen by the man. In other words, even if the man
was clairvoyant and could instantly tell the exact quality of each woman, he
would still require within a constant factor the same amount of women as
our strategy requires.

Lemma: The optimal strategy for the dating problem takes O( 1
1−Q ln 1

1−Q)
dates.

Proof: By using a suboptimal value for Q′, we cannot possibly decrease
the expected number of dates. So, plugging Q′ = Q+1

2 into E[X], we have:

E[X] =
ln( 1−Q

Q′−Q) + 2 + ln( Q′

Q′−Q)

1− Q′+Q
2

E[X] =
ln( 1−Q

Q+1
2
−Q

) + 2 + ln(
Q+1

2
Q+1

2
−Q

)

1−
Q+1

2
+Q

2

E[X] =
1

3
4(1−Q)

(2 + ln(2) + ln(
1 + Q

1−Q
))

Since Q is bounded above by 1, we have E[X] = O( 1
1−Q ln 1

1−Q).
In particular, since such a strategy exists, it must be the case that the
optimal strategy cannot be worse.

Data

The data from the following table assumes Q′ = Q+1
2 . The empirical

portion of the table was generated using a simulation that ran for ten million
iterations:
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Analytic Values Empirical Averages:
Q E[X] E[W ] X W Final qi

0.7 19.6789 4.444444 19.6746 4.44343 0.883356
0.75 24.7416 5.333333 24.735 5.33264 0.902779
0.8 32.6025 6.666667 32.6026 6.66678 0.922208

0.85 46.2707 8.888889 46.2739 8.89005 0.941677
0.9 75.1678 13.33333 75.1757 13.3337 0.961113

0.925 105.57 17.77778 105.594 17.7821 0.970839
0.95 169.512 26.66667 169.51 26.6655 0.98056

0.975 376.672 53.33333 376.802 53.3557 0.990282
0.985 673.642 88.88889 673.449 88.8743 0.994168

The following table was calculated using optimal values for Q′. We can
see that the difference between the optimal expectations/averages are very
close to those obtained using the Q′ = Q+1

2 approximation. The empirical
data was also obtained using a simulation that ran for ten million iterations:

Q E[X] Empirical X

0.6 13.43 13.4292
0.7 19.5114 19.5141

0.75 24.586 24.5863
0.8 32.4727 32.4751

0.85 46.1876 46.1912
0.9 75.1517 75.182

0.925 105.569 105.568
0.95 169.382 169.422

0.975 375.148 375.133
0.985 668.601 667.959
0.995 2277.5 x

Merits, Limitations, and Open Problems

Relating this problem to reality assumes an infinite number of women.
We believe that this is justified because there are more women in the world
than any man could date, and therefore it would always be possible for a
man to find another date. This problem also assumes the quality of every
woman comes uniformly distributed between R[0, 1]. This too is a realis-
tic assumption when one considers the concept of quality as it relates to
percentiles. In particular, for any ranked set, the percentile of an element
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chosen at random from that set is uniformly distributed. In addition, the
interval model of receiving information about a woman’s true quality is re-
alistic. If one considers a model in which every woman has several traits
where each trait contributes to her quality, one can imagine learning of the
presence or absence of specific traits during a date, yielding maximum and
minimum possible qualities.

Because in the real world applicants for positions (women in our case)
are pre-screened and applicants of higher quality are more likely to be in-
terviewed, pre-screening has a large effect on the analysis of real world sit-
uations. This is not reflected by our model. Perhaps the largest limitation
of our model is that women are assumed to always agree to marriage when
the man proposes to the woman. A better model might assign probabilities
based on quality to each woman representing the chance that she will reject
or accept if she is proposed to, and so a more qualified woman might be
less likely to marry the man when compared to a woman of lesser quality.
One open problem we propose might be to analyze a model that reflects
this subtlety, as it should make for a more challenging analysis. Another
interesting problem might be to analyze the same Dating Problem where
each woman’s true quality qi and the estimates come from some Gaussian
distribution. However, in this case, it would be impossible to guarantee that
the woman eventually proposed to has a quality which is at least any fixed
Q.

Although we were unable to prove that our strategy’s requirements were
a constant factor away from the optimal strategy’s, we suspect that because
every strategy requires no less than Ω( 1

1−Q) women, and because a woman’s
quality becomes significantly more difficult to estimate as it gets closer to
one (so the number of dates per woman probably also must increases as Q
approaches one), our strategy may be optimal to within a constant factor.
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