
On the Automated Design of Bipedal Robot Control

Trevor Standley
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

tstand@cs.ucla.edu

Abstract

The open source physics engine Box2d was coupled
with several machine learning techniques and applied to
the task of developing a system for controlling a two di-
mensional robot simulation to engage in lifelike bipedal
locomotion. A two dimensional, rigid body, humanoid
model was designed with body part proportions and
masses as close to those of a human subject as possible.
The model had 13 degrees of freedom and 14 bodies.
A function mapping a vector of features of the state of
the robot to a vector of appropriate joint torque controls
was defined and implemented using a neural network.
The parameters of the neural network were learned us-
ing an evolution algorithm which proceeded in stages
from standing to walking. This resulted in unnatural
looking forward locomotion. Furthermore, the param-
eters of the evolution algorithm had to be hand tuned
for a specific set of robot parameters and configuration.
In order to overcome these limitations, other machine
learning techniques for implementing this function and
learning the function parameters were implemented in-
cluding q-learning with neural networks and q-learning
with regression trees. Neither method was more suc-
cessful than the evolution algorithm.

Introduction
Designing motion controllers is a well studied problem in
both robotics and digital entertainment. Typical bipedal mo-
tion controllers, such as the one that controls Asimo are de-
signed by hand, and result in motion that does not look life-
like (Chestnutt et al. 2005). Reinforcement learning tech-
niques such as those used in Boston Dynamics’ Big-Dog,
and evolution algorithms such as those used by Natural Mo-
tion and in (Reil and Husbands 2002) do create lifelike mo-
tion controllers, but have not been applied or are not effec-
tive for the task of simulated bipedal locomotion in unknown
or stochastic environments1.

Much work has been done on learning to control bipedal
robots both in the real world, and in three dimensional sim-
ulated environments, but there are many applications, espe-
cially in digital entertainment, for motion controllers for two
dimensional robots. Although human minds have evolved in

1Recently Boston Dynamics was able to accomplish this in a
real 3d environment with Petman

three dimensions and modern computer hardware can eas-
ily represent three dimensional environments, many (if not
most) modern video games still operate in strictly two di-
mensional environments, and merely employ the capabilities
of advanced graphical hardware for aesthetic purposes. Re-
cent award winning games such as Sony’s Little Big Planet
and Nintendo’s Super Smash Brothers Brawl are a few such
examples. It seems that the simplicity of understanding and
character control in two dimensions gives such games their
appeal.

A good deal of work has also gone into finding a particular
sequence of torques to apply to each joint during each time
step in a model to result in locomotion. Some of this work
focuses on creating signal generators which generate the ap-
propriate waveforms for desired motion, while others aim to
create an explicit representation of the waveforms in mem-
ory which can be deterministically simulated on the robot to
result in locomotion. These approaches are simple, but have
several drawbacks.

Since the problem of bipedal motion in two dimensions
must consider balance in only one dimension, one might
expect attempts to design motion controllers in two dimen-
sions to be more successful than attempts to design motion
controllers in three dimensions, and since this problem has
many applications, I chose to explore this problem for my
final project.

Goals
The ultimate goal for the project is to create a system capa-
ble of automatically designing a motion controller for a sim-
ulated robot given only a description of the physical char-
acteristics of the robot and the physical laws of the simu-
lation. Once designed, the motion controller would take a
description of the state of the robot and the world, and pro-
duce the appropriate muscle torques for the robot to apply.
We would like the motion controller to be robust to noise in
the state description as well as nondeterminism in the state
transitions. Furthermore, at any time during the simulation,
it should be possible to switch to a different motion con-
troller that was trained using a different objective function.
For example, the system could design a motion controller
for walking, and another for jumping. Then a user should
be able to press a key to give the walking motion controller
control of the robot, causing it to walk forward. At any time



Figure 1: The bipedal robot model.

later, the user should be able to press a different key to give
the jumping motion controller control, at which point the
robot should seamlessly jump regardless of which state the
robot is in when the switch is made.

Testbed
Although the goal is to be able to generate a motion con-
troller for any type of robot, a bipedal robot was designed to
test the limits of the methods.

A simple syntax for inputting the characteristics of the
robot and the physical laws was designed, and a simple file
defining a bipedal robot was coded within that syntax. This
approach theoretically would allow any robot to be input into
the program for the evolution algorithm to work on, but the
algorithm was only tested on a single robot design.

The file defined the shapes of 14 rigid bodies: two feet,
two lower legs, two upper legs, one lower torso, one upper
torso, two upper arms, two lower arms, a neck and a head.
The file also specified the positions of the necessary 14 rev-
olute joints to connect the rigid bodies.

The length measurements for the rigid bodies were care-
fully measured on a human subject. The masses of each rigid
body were found using an equation taking total body mass
and height. The equation, which was available online from
the Department of Anatomy of the University of Brussels2,
was created using linear regression on experimental data
from cadavers for each mass. The moments of inertia were
calculated as if the mass was uniformly distributed through-
out the area. Other parameters, such as muscle strengths,
could not be found online, and were hand tuned to give good
walking performance, but kept within the realm of human
ability.

States, Actions, and Functions
We consider a class of motion controllers that are stateless,
and therefore only consider the current configuration of the
robot when selecting actions for a particular timestep. The
task of designing a motion controller can therefore be seen
as a task of defining a function f(x) that maps the state of
the robot at any timestep x to the appropriate action (joint
torques for each joint) for that timestep a.

2http://riodb.ibase.aist.go.jp/dhbodydb/
properties/m/table/e-k-01_m_table.html

Another function, p(xt, a), represents the laws of physics.
This function maps the state of the robot and an action to a
subsequent state xt+1. The trajectory of the robot is a se-
quence of states, x0, x1, ... that the robot passes through un-
til the end of the simulation.

Given the motion controller f(x), a function p(x, a), and
an initial state x0 we can generate the remaining states in
the trajectory x1, x2, ... by iteratively applying a function
g(x) = p(x, f(x)) to the start state until the end of the sim-
ulation.

A more common approach, such as the one in (Erez
2010), defines a motion controller as a function h(t), which
maps a timestep t to the appropriate action. Under this ap-
proach, one generates a state xt in the trajectory from a
state xt−1 by applying the function j(xt−1, t) = p(xt, h(t))
to the state. In this case, the function j requires both the
timestep and the previous state to generate the next state.

We will define, for both approaches, a fitness function
q(x1, x2, ...) which takes a trajectory and returns a value.
Larger values correspond to more desirable trajectories.

Our approach has several advantages over the more com-
mon latter approach. Firstly, if we allow for nondetermin-
istic physical laws, then the latter approach must find a se-
quence of actions that bring the start state through a trajec-
tory with high fitness regardless of which random choices
are made by the physical laws. This may not be possible.
Our approach, however, can learn in the presence of nonde-
terminism, and must only choose an action that works for a
particular state rather than choose an action that works for all
possible states that could occur during a particular timestep.

Secondly, even if a trajectory with high fitness passes
through a state multiple times, or passes through a set of
similar states, the latter method has to learn an action for
each timestep, while our method must only learn the action
that corresponds to that state. For example, our method can
learn a rule that whenever there is a state in which the left
foot is behind the right foot by half a meter, and the center
of mass is in front of the right foot, then raise the left foot
and bring it forward. The other method must learn many
corresponding rules, such as when the timestep is 40, raise
the left foot and bring it forward, and when the timestep is
140, raise the left foot and bring it forward, etc.

Thirdly, if the rules of physics change slightly (for exam-
ple, the simulation is run with a weighted backpack attached
to the model, or the model will learn from a computer simu-
lation, but be applied in the real world) then the latter method
will quickly start making the wrong moves at the wrong time
resulting in falling. To make matters worse, the robot will
continue to make walking motions after having fallen. Our
method, however, will gracefully adapt without needing to
be retrained, because it will notice that the state is slightly
different than expected, and choose a slightly different, and
more appropriate, action.

Finally, if each run of the simulation has an unpredictable
set of parameters, for example the model must be able to
walk on unpredictably hilly terrain, then the static sequence
of moves learned by the other method will quickly become
inappropriate for the new trajectory, and the motion will fail,
but our method will select an action that is appropriate for

http://riodb.ibase.aist.go.jp/dhbodydb/properties/m/table/e-k-01_m_table.html
http://riodb.ibase.aist.go.jp/dhbodydb/properties/m/table/e-k-01_m_table.html


the current state regardless of the order in which those states
occur in the trajectory.

State Features
In order to design a function f(x) as described in the previ-
ous section, it is useful to select a set of simple features each
of which can be quickly determined from the raw state. To-
gether these features form a vector ~v = v1, v2, ..., vn where
each feature is an element of the vector.

The function f can now simply map a feature vector to
an action vector. This mapping can be defined via a neural
network, as we will see in the next section.

The efficacy of this approach depends highly on the
choice of state features for a specific domain. We carefully
chose twenty-six features.

The first thirteen features are the angles of the thirteen
joints in the model. Together with the angle and position of
a single rigid body, this fully specifies the state of the robot
except body part velocities.

The fourteenth and fifteenth features are the x and y ve-
locities of the center of mass of the robot respectively.

The sixteenth feature is the y component of the center of
mass of the robot. The x component is not used as the robots
motions should not depend on how far it has already walked.

The seventeenth, eighteenth and nineteenth features have
to do with the right foot. The seventeenth feature is the x
position of the foot relative to the x component of the center
of mass of the machine. In general, all x components must
be relative, otherwise they would not be consistent between
different iterations of the walking cycle. The eighteenth fea-
ture is the y position of the right foot, and the nineteenth
feature is the absolute angle of the right foot.

The twentieth, twenty-first, and twenty-second features
are just as above, but for the left foot.

The final four features are the x (relative) and y positions
of the head, and the x and y velocities of the head.

Many important features can be derived by these. For ex-
ample, a useful feature for walking is balance. One way to
get a feel for whether or not a 3d robot is balanced is to de-
termine whether the center of mass of the robot is within the
convex hull of the points on the robot’s feet that touch the
ground. In 2d, this degenerates to determining whether the
x components of the feet have opposite signs (because they
are relative to the center of mass anyway).

Neural Networks
As previously stated, the function f(x) can be implemented
using a neural network. We use a feed-forward neural net-
work with twenty-six inputs and coincidentally twenty-six
outputs, two outputs for each of our model’s 13 joint.

A feed-forward neural network is a directed acyclic graph.
In our case, the graph consists of two or more layers of
nodes. Between each layer of nodes, there are edges from
each node in the previous layer to each node in the next layer.
The first layer is known as the input layer, and the last layer
is the output layer. Each node has a real valued activation
level. Each edge has a real valued strength. The activa-
tion level of each node in the input layer is simply the input

vector of the neural network. The activation level of a sub-
sequent node is calculated from the activation levels of the
previous layer by taking the weighted sum of the previous
layer’s activation levels and applying the sigmoid function
s(x) = 1/(1− ex) to the result.

It has been shown in (Cybenko 1989) that a neural net-
work with only three layers can approximate any continuous
vector valued function to an arbitrary degree of accuracy if
there are enough nodes. Adding another layer allows dis-
continuous functions to be approximated as well.

Since we did not know the nature of the function we were
trying to approximate, we tried many combinations of the
number of layers and hidden nodes. Many combinations did
not seem to be able to create locomotion. Of the combi-
nations that produced locomotion, no combination seemed
significantly better than the rest. We settled on a neural net-
work with three layers. The input layer contained 26 input
nodes. The output layer contained 26 output nodes, and the
middle layer contained 74 nodes.

In order to translate the values of the 26 output nodes into
joint torques for the robot, we implemented a Hooke’s law
model. For each joint, one output was mapped to the spring
constant of the model, k, while the other was mapped to
the resting joint angle r. The torque was calculated as t =
k · (r − a) where a is the current angle of the joint. A more
common approach would be to simply output an angle, and
simulate the model as if the angle were achieved. Not only
is this unrealistic, but it leads to robotic looking motions that
fail to react to unforeseen circumstances. One benefit of our
method is that it is possible to limit the amount of torque the
model is allowed to produce.

In our case, the weights of the edges are selected using an
evolution algorithm. The mutation step of the evolution al-
gorithm adds a normally distributed pseudorandom number
with a mean of 0 and a standard deviation that was chosen
to maximize performance to each weight.

We later experimented with sexually combined genomes
by choosing each weight from the corresponding weight of
either parent at random.

Evolution Algorithms
The evolution algorithm with which we obtained our first
results is simple. We will refer to this as the simple evolution
algorithm3. There is a pool of 60 genomes. Each genome is
the list of weights for the neural network that controls the
robot.

A physics simulation is run for each genome where at ev-
ery frame the appropriate neural network inputs are calcu-
lated and given to the neural network defined by the genome.
The function f(x) is then calculated as defined for the neu-
ral network. From the outputs, the appropriate joint torques
are calculated for that frame, and the simulation is advanced
one timestep. The entire simulation is run for 40 simulated
seconds (about 50ms real time) for each genome. A fitness
function evaluates each trajectory, and the highest rated 20

3The details of this algorithm are being recalled from memory
as the source code was subsequently modified, and may not be en-
tirely accurate.



genomes replace the lowest rated 20 genomes. The algo-
rithm then mutates the lowest 50 rated genomes (including
the clones).

The fitness function is calculated in stages. During the
first 60 generations, the fitness function simply measured
how long the robot’s head remained above 90% of its ini-
tial height (longer is better). For the rest of the generations,
the fitness function measured the final minimum x position
of any body part (higher is better), as well as adding a large
penalty for each timestep that the head was below 90% of its
initial height.

This algorithm gets stuck in one of several local minima.
Most often, the algorithm correctly learns to stand, but fix-
ates on a stable stance without ever progressing to forward
motion. About 20% of the time, the algorithm results in a
genome that makes indefinite forward progress, although it
is usually more of a skipping motion than a walk. The prob-
lem is that the algorithm never switches the front and back
foot.

In order to encourage the model to switch the front and
back foot, we add a bonus to the fitness score whenever the
legs switch relative positions.

Results
In about 15% of the cases, the model that encourages leg
switching results in a legitimate foot-over-foot walk. The
video can be watched here: http://www.youtube.
com/watch?v=GoRwwo1LkBI. Unfortunately, the mo-
tion does not seem natural, the model is expending more
energy than would be natural, and the head is being flopped
up and down.

Without leg swapping, we get the skipping motion
seen here: http://www.youtube.com/watch?v=
bLoTAf8vY3I. Note that not every model is able to main-
tain forward motion. This is a local maximum that the evolu-
tion algorithm never breaks out of without the leg switching
encouragement technique described above.

Sometimes this stable local minimum occures: http://
www.youtube.com/watch?v=HJwTLMHxdj8. The
algorithm found a way to bash its arm against the joint limit
(set in Box2D), causing the whole system to lurch forward.

Lost Enhancements
As mentioned above, I experienced a computer crash during
the summer after the original work. My solid state drive was
wiped out and the most recent backup was several months
behind. I lost several high quality enhancements which I
will explain below.

I added parallelization to the algorithm which better took
advantage of my computer’s 4 cores (8 virtual). This leaded
to a nearly 6x speedup which made manual iterative im-
provements to the framework much faster.

I also improved the simulation output by showing only the
highest rated genome rather than each genome in turn.

One common failure mode was the algorithm choosing a
leg for support and a leg for forward efforts. At this local
minimum, the genome never produced leg after leg motion.
However, since each leg in a true bipedal walker performs

approximately the same function, the number of parameters
of the model could be reduced while mitigating this local
minimum by using the same set of weights for the right and
left foot. This was most easily accomplished by running
the network twice, once with reversed roles of the right and
left sides. Not only did this make successful walkers more
frequent in the population, but it reduced the number of iter-
ations required to find a good set of weights substantially.

The physics simulator never quite seemed accurate no
matter the parameters. The biggest obvious flaw is that the
foot collisions with the ground were typically not solidly
connected. The feet would bounce up and down slightly
which allowed horizontal motion of the lower foot despite
an infinite coefficient of friction between the foot and the
ground. In order to alleviate some of the problems this
caused, I modified my bipedal model to have shock ab-
sorbers in the legs. This reduced the amount of bounciness,
but was only moderately effective.

In order to produce a robust model that could predict ter-
rain and recover from unexpected events, noise was added to
the simulation. Furthermore, random terrain was generated
for each trial of the algorithm. The terrain was generated us-
ing a two dimensional fractal landscape algorithm where the
starting and ending point were set to have the same eleva-
tion. The magnitude of the bumpyness was set to a constant
that started at zero and increased to an asymptotic maxi-
mum with the number of generations of the genetic algo-
rithm. The neural network architecture was modified to give
a read of the height of the terrain at various points below the
walker. Ultimately the walker was able to handle slight hills
in the landscape, but it was never fully robust.

Reinforcement Learning
After losing my code I decided to start again from a previ-
ous backup. Although the lost enhancements really helped
the simulation, the motion never looked perfect and natu-
ral. I thought I might have more success with reinforcement
learning.

There are two major challenges to adapting common
model-free reinforcement learning schemes such as Q-
learning to this problem. The first is that both the input state
information and the output action are continuous vectors, so
representing the value of a state-action pair cannot be done
with a lookup table (the typical method). The second is that
even if the value of a state-action pair were to be represented
somehow, it would be difficult to find the action that max-
imizes the value for a given state. I tried two methods for
representing the value for each state-action pair.

The first method was artificial neural networks where the
input was the the concatenation of the state and action vec-
tors. For this I used a network with 39 inputs (the state vec-
tor and the action vector) and a single output for the value
of the state action pair. Various parameters were chosen for
the number of hidden units and the number of layers. Under
this scheme, a single neural network is developed rather than
a set of 60. At every timestep, the action vector that maxi-
mizes the q-value is chosen using gradient descent with ran-
dom restarts (the gradient of each input parameter was mea-
sured using a technique similar to backpropagation). The

http://www.youtube.com/watch?v=GoRwwo1LkBI
http://www.youtube.com/watch?v=GoRwwo1LkBI
http://www.youtube.com/watch?v=bLoTAf8vY3I
http://www.youtube.com/watch?v=bLoTAf8vY3I
http://www.youtube.com/watch?v=HJwTLMHxdj8
http://www.youtube.com/watch?v=HJwTLMHxdj8


agent takes the maximum action which results in a new state
and a reward (which was simply the change in the minimum
x-value attained by any portion of the robot). The maximum
is once again calculated for this new state, and the value
plus the reward is backpropagated to the previous state with
some decay. In theory, this process will converge to a neu-
ral network-defined policy that maximizes the long term re-
ward. Unfortunately, I could only get the system to work
with the simplest of robots (a single panel with a wheel).

The more complex the robot, the more difficulty the neu-
ral network had in representing a value function. The result
was chaos, and I decided to try another regression technique,
regression trees. Like neural networks, regression trees map
a real valued vector to a real valued output. They start with
a simple linear regression on the inputs. Whenever the er-
ror for the regression exceeds a threshold, presumably be-
cause of nonlinearities in the function, the system branches,
creating two linear regressions. One for one half of the in-
put space, and another for the other half. This process is
repeated fractally until the desired error is reached. There
were a few major obstacles with this approach. The first is
that the functions represented are not differentiable so gradi-
ent descent was not possible for finding the action that max-
imizes the value. The second was that regression trees were
unable to reach an acceptable error level without using up
all available memory quickly. Finally, networks had to be
thrown away as old values didn’t correctly take into account
new information. I tried to solve the first by sampling the
space of actions repeatedly. I was unable to solve the second
or the third.

I abandoned the reinforcement learning approach, al-
though I believe it could be made to work abstractly, the
code became overwhelmingly complex with my implemen-
tation.

Future Work
A more effective solution to the problem of accurate foot
friction with the ground would almost surely help tremen-
dously. Box2d allows joints to be created and destroyed
at any time during the simulation. Furthermore, the newest
version of Box2d supports a number of new joint types, in-
cluding what is called a ”wheel joint” the wheel joint will
bind a rigid body to another in a way that allows linear mo-
tion along a specified axis, and rotation of one body about
the anchor that connects it to the joint. Such a joint is ideal
for a wheel with a shock absorber, but it could be made to
support an infinite coefficient of friction at a distance. Af-
ter every frame of the simulation, I can create a wheel joint
between the lowest point on the foot and the ground if the
foot is less than a certain distance from the ground. The
joint would allow rotation of the foot, and vertical translation
with the ground, but would block all horizontal motion un-
til the foot’s distance with the ground exceeded some small
threshold. This would effectively create the desired infinite
friction even if the simulated foot does break contact with
the ground from time to time.

Another idea I think would be promising is heuristic
search. By discretizing the action space, the state space

of the machine could be searched in an efficient way us-
ing a heuristic search algorithm like IDA*(Korf 1985). A
goal node could be one in which the machine has completed
a step cycle and has made a certain amount of horizontal
progress. The heuristic evaluation function could calculate
the minimum number of simulation steps that would have
to be run for each rigid body to move directly to a goal
position assuming a maximum speed or a maximum accel-
eration/deceleration. On a modern machine, I suspect this
search could be completed, yielding an optimal set of steps
for any given machine position. Finally, a neural network
could learn the correct output for any given input directly,
leading to a controller with the desired speed and accuracy
(or at least a great place for the evolution algorithm to start).

Finally, I think evolution algorithms can be improved in
general. Evolution algorithms typically report the highest
ranking genome after a number of iterations. However, in-
stead of reporting the highest ranking genome, I believe it
might be better to report the median of top genomes. For
each real number in the genome, calculate the median across
say the top 15% of genomes and return the result. This
would overcome randomness that makes the top genome
better overall, but worse in some ways.

Conclusion
Evolution algorithms are hard. While it is possible to get
good results for many problems, it requires painstaking hand
tuning to get right. Nevertheless, they continue to be more
promising than reinforcement learning in this domain.

Also, keep a daily backup of all work in the cloud.

References
[Chestnutt et al. 2005] Chestnutt, J.; Lau, M.; Cheung, G.;
Kuffner, J.; Hodgins, J.; and Kanade, T. 2005. Footstep
planning for the honda asimo humanoid. In in Proceedings
of the IEEE International Conference on Robotics and Au-
tomation.

[Cybenko 1989] Cybenko, G. 1989. Approximation
by superpositions of a sigmoidal function. Mathemat-
ics of Control, Signals, and Systems (MCSS) 2:303–314.
10.1007/BF02551274.

[Erez 2010] Erez, T. 2010. Local optimization for simulation
of natural motion. In AAAI.

[Korf 1985] Korf, R. E. 1985. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
Intelligence 27:97–109.

[Reil and Husbands 2002] Reil, T., and Husbands, P. 2002.
Evolution of central pattern generators for bipedal walking
in a real-time physics environment. IEEE Trans. Evolution-
ary Computation 6(2):159–168.


	Introduction
	Goals
	Testbed
	States, Actions, and Functions
	State Features
	Neural Networks
	Evolution Algorithms
	Results
	Lost Enhancements
	Reinforcement Learning
	Future Work
	Conclusion

